

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/43

Paper 4 Theory (Extended)

October/November 2021

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

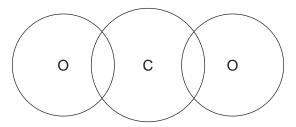
- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 A list of substances is shown.

ammonia
bauxite
carbon dioxide
carbon monoxide
ethanol
hematite
oxygen
sodium chloride
sulfur dioxide

Answer the questions using the list of substances.

Each substance may be used once, more than once or not at all.


State which substance is:

(a)	an element	[1]
(b)	an ore of aluminium	[1]
(c)	a gas that causes acid rain	[1]
(d)	used as a fuel	[1]
(e)	an ionic compound	[1]
(f)	produced in the Haber process	[1]
(g)	a product of respiration	[1]
(h)	a toxic product of the incomplete combustion of hydrocarbons	
		[1]
(i)	a gas produced in the test for nitrate ions.	[1]
	[Total	: 9]

2	2 This question is about electrolysis.								
	(a) Sta	State the meaning of the term <i>electrolyte</i> .							
						[2]			
		ctrodes are us	information about sed in each expering e table to show the	nent.	·	Carbon (graphite) vsis.			
			positive elect	rode (anode)	negative elect	rode (cathode)			
	elect	trolyte	observations	name of product	observations	name of product			
	•	eous II) sulfate	colourless bubbles						
cc		ed aqueous bromide			colourless bubbles	hydrogen			
	(ii)	concentrated	s produced at the d aqueous sodium l nic half-equation for	oromide.	e (cathode) during	[5] the electrolysis of			
						[2]			
	(iii)		easons why carbon						
	2								
	(iv)	Name the pa	article responsible f	or the conduction o	f electricity in the m	etal wires used in a			
						[1]			
						[Total: 12]			

	ad is a metallic element in Group IV. One of the ores of lead is galena, which is an impure form $\operatorname{ead}(\operatorname{II})$ sulfide, PbS.
Lea	ad also occurs in the ore cerussite, which contains lead(II) carbonate, $PbCO_3$.
(a)	Calculate the relative formula mass, M_r , of PbCO $_3$.
	$M_{\rm r}$ of PbCO ₃ =
(b)	The $M_{\rm r}$ of PbS is 239.
	Calculate the percentage of lead by mass in PbS.
	percentage of lead by mass in PbS = [1]
(c)	The percentage of lead by mass in PbCO ₃ is 77.5%.
	Use this information and your answer to (b) to suggest whether it would be better to extract lead from PbCO ₃ or PbS.
	Give a reason for your answer.
	[1]
(d)	When lead(II) carbonate is heated it decomposes into lead(II) oxide, PbO, and carbon dioxide.
()	Write a chemical equation for this reaction.
	[1]
	[.]
(e)	$\label{eq:lead} \mbox{Lead(II) carbonate reacts with dilute nitric acid. One of the products is aqueous lead(II) nitrate, $Pb(NO_3)_2$.}$
	Write a chemical equation for this reaction.
	[2]

- (f) Lead(II) oxide and carbon dioxide are oxides of Group IV elements.
 - (i) Complete the diagram to show the electron arrangement in one molecule of CO₂. Show only the outer electrons.

[2]

(ii) The melting points of lead(II) oxide and carbon dioxide are shown.

	melting point/°C
lead(II) oxide	886
carbon dioxide	– 56

Use your knowledge of structure and bonding to explain why lead($\rm II$) oxide has a much higher melting point than carbon dioxide.

Your answer should refer to:

the types of particles involved the relative strength of the forces of attraction between the particles.

(a)	Part of th	ne reactivit	v series	ic	shown
(9)	raituiti	ie reactivit	y selies	15	SHOWIL

magnesium	most reactive		
lead			
copper	least reactive		

Aqueous lead(II) nitrate contains Pb2+ ions.

Two experiments are carried out.

In Experiment 1, magnesium is added to aqueous lead(II) nitrate.

In Experiment 2, copper is added to aqueous lead(II) nitrate.

Write an ionic equation for any reaction that occurs in each experiment. If no reaction occurs write 'no reaction'.

Experiment 1	
Experiment 2	
	[2]

- **(h)** When lead(II) nitrate is heated it decomposes to produce the same gaseous products as when copper(II) nitrate is heated.
 - (i) One of the gaseous products is oxygen.

Describe a test for oxygen.

test	 	 	
observations	 	 	

(ii) Name the other gaseous product.

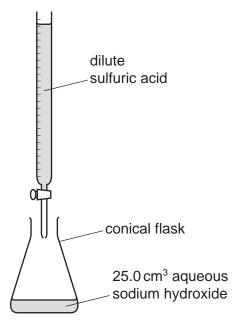
[1]
F.1

[Total: 16]

[2]

[2]

4	Carbon	is an	important	element.
---	--------	-------	-----------	----------


(a)	Carbon	exists	as t	the	isotopes	12C	and	13C.
	~ <i>,</i>	Carbon	CALCIO	au		loctopoo	~~	alla	6-

Complete the table.

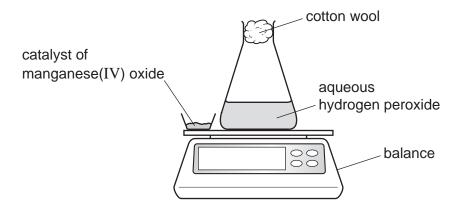
isotope	number of protons in one atom	number of electrons in one atom	number of neutrons in one atom
¹² ₆ C			
¹³ ₆ C			

(b)	Nar	me two forms of the element carbon which have giant covalent structures.
		[1]
(c)	The	e Avogadro constant is the number of particles in 1 mole.
	The	e numerical value of the Avogadro constant is 6.02×10^{23} .
	(i)	Calculate the number of molecules in 22.0 g of carbon dioxide, CO ₂ .
	(ii)	molecules [2] Calculate the number of molecules in 6.00 dm³ of carbon dioxide gas at room temperature and pressure.
		[Total: 6]

5 (a) Dilute sulfuric acid and aqueous sodium hydroxide can be used to prepare sodium sulfate crystals using a method that involves titration.

	(i)	Suggest why universal indicator is not suitable for this titration.
		[1]
((ii)	Name an indicator that can be used in this titration.
		[1]
At th	ne e	of dilute sulfuric acid neutralises 25.0 cm³ of 1.00 mol/dm³ aqueous sodium hydroxide. and of the titration the conical flask contains aqueous sodium sulfate with the dissolved r as an impurity.
		scribe how to prepare a pure sample of sodium sulfate crystals from the original solutions lilute sulfuric acid and aqueous sodium hydroxide of the same concentrations.
	Υοι	are not required to give details of how to carry out the titration.
		[5]

(c)		dium hydrogensulfate, NaHSO $_4$, dissolves in water to produce an aqueous solution, taining Na $^+$, H $^+$ and SO $_4^{2^-}$ ions.	Χ,
	Stat	te the observations when the following tests are done.	
	(i)	A flame test is carried out on X .	
			[1]
	(ii)	Copper(II) oxide is warmed with an excess of X .	
			[2]
((iii)	Acidified aqueous barium nitrate is added to X .	
			[1]
		[Total:	11]

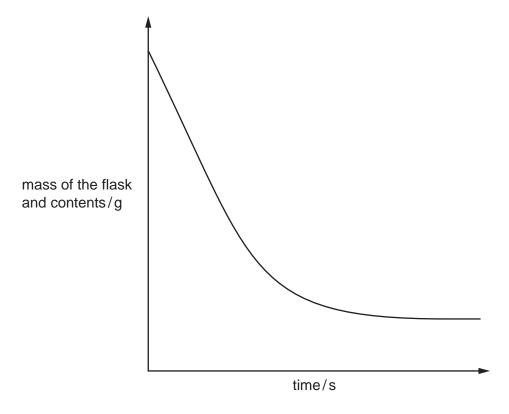

6 A student investigates the decomposition of hydrogen peroxide in the presence of a catalyst of manganese(IV) oxide.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

(a) State the meaning of the term catalyst.

				[2]

(b) The diagram shows the equipment the student uses.


The student uses this method:

- the catalyst is added to the aqueous hydrogen peroxide
- the stop-clock is started
- the mass of the flask and contents is recorded at regular time intervals.

[2]

[Total: 10]

A graph of the mass of the flask and contents against time is shown.

(i)	Suggest why the mass of the flask and contents decreases as time increases.
(ii)	Describe what happens to the rate of the reaction as time increases.
	[2]
	e student repeats the experiment at a higher temperature. All other conditions stay the ne. The rate of reaction increases.
(i)	Explain, in terms of collisions between particles, why the rate of reaction increases at a higher temperature.
	[3]

(c)

(ii) Draw a line on the graph in (b) for the experiment at a higher temperature.

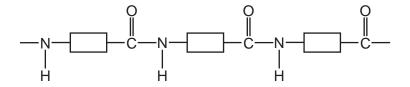
7

(a)	Eth	anol is a member of the homologous series of alcohols.				
	Giv	ve two characteristics of members of a homologous series.				
	1					
	2		 [2]			
			[4]			
(b)	Eth	anol can be manufactured from ethene.				
	Eth	ene can be made from long chain hydrocarbons such as decane, $C_{10}H_{22}$.				
Ethene is then converted into ethanol.						
	(i)	Name the process used to obtain ethene from long chain hydrocarbons such as deca $\rm C_{\rm 10}\rm H_{\rm 22}.$	ıne,			
			[1]			
	(ii)	Complete the chemical equation to show the formation of ethene from decane, $C_{10}H_{22}$				
		$C_{10}H_{22} \rightarrow C_4H_8 + \dots + \dots$	[2]			
((iii)	Write the chemical equation for the conversion of ethene into ethanol.				
			[1]			
((iv)	Name the type of reaction occurring when ethene is converted into ethanol.				
			[1]			
	(v)	Give one condition for the reaction in which ethene is converted into ethanol.				
			[1]			
(c)	Eth	anol can also be produced by fermentation of carbohydrates such as glucose.				
		re two advantages of manufacturing ethanol by fermentation compared to manufacture anol from ethene.	ring			
	1					
	2					
			[2]			

(d) (i)	Under certain conditions ethene can react with chlorine to produce chloroethene
	The structure of chloroethene is shown.

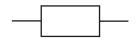
 $C_2H_4 + Cl_2 \rightarrow C_2H_3Cl + HCl$

The equation for the chemical reaction is shown.


State the type of chemical reaction between ethene and chlorine that this equation sho)WS.
	[1]

- (ii) Chloroethene monomers can be converted into a polymer called poly(chloroethene).

 State the type of polymerisation that produces poly(chloroethene) from chloroethene.
- (iii) Draw a section of the poly(chloroethene) molecule made from **two** monomer molecules.


[2]

(e) The structure of part of a polymer is shown.

This polymer is made from one type of monomer only.

Complete the diagram to show the structure of the monomer used to produce this polymer. Show all of the atoms and all of the bonds in the functional groups.

[2]

[Total: 16]

15

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

 	z He	helium 4	10	Se	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Rn	radon			
=			o I	L	fluorine 19	17	Cl	chlorine 35.5	35	南	bromine 80	53	П	iodine 127	85	Ąŧ	astatine -			
5			∞ (0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	nolonium	116		/ermorium -
>								"0												=
2																		114	Εl	erovium
																				=
								<u>m</u>										112	ت د	copernicium —
																				Ē
]																	Ε
	- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	H	hassium
									25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
				00	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
		Key	tomic number	mic syml	name tive atomic ma				23	>	vanadium 51	41	g	niobium 93	73	ā	tantalum 181	105	g C	dubnium
			, as	ato	rela				22	j	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	<u>₹</u>	rutherfordium -
						,			21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium -
_			ო :		lithium 7	1	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	ь Г	francium -
				II	II	II	II	II	III IV VI VII	II	III IV VI VII VII	II	II	III	III IV V VI VI VI VI VI	II	III IV V VI VII VI	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1

		_			
r Lu	lutetium 175	103	۲	lawrencium	I
°	ytterbium 173	102	%	nobelium	I
ee Tm	thulium 169	101	Md	mendelevium	ı
88 Fr	erbium 167	100	Fm	ferminm	ı
67 H0	holmium 165	66	Es	einsteinium	ı
° ^	dysprosium 163	86	ŭ	californium	ı
65 Tb	terbium 159	97	Ř	perkelium	ı
Gd 64	gadolinium 157	96	Cm	curium	ı
e3 Eu	europium 152	92	Am	americium	ı
Sm	samarium 150	94	Pu	plutonium	ı
Pm	promethium	93	ď	neptunium	ı
。 9 P	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
C 28	cerium 140	06	H	thorium	232
57 La	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).